
A Content Adaptation Network using SelNet

Mats Uddenfeldt and Richard Gold
Department of Information Technology

Uppsala University, Box 337
S-75105 Uppsala, Sweden

Mats.Uddenfeldt.9771@student.uu.se
Richard.Gold@it.uu.se

ABSTRACT
The Internet today shows a constantly increasing number of hosts
with more and more disparate capabilities. This leads to a grow-
ing need of content adaptation services, which are able to respond
to different client capabilities. In order to make such services rel-
atively straight forward to deploy, this paper suggests a framework
which uses SelNet, a network architecture that is based on a virtual-
ized link layer with explicit indirection support, as the infrastructure
for the content adaptation network. We discuss the implications of
such a framework and report on implementation progress.

1. INTRODUCTION
The number of nodes connected to the Internet is continuously in-
creasing and with the introduction of the next generation of mobile
systems, this development is expected to continue. At the same
time the clients are growing more and more disparate with regard
to their different hardware capabilities. Today a content provider
is expected to make specific allowances to make sure the informa-
tion can be presented in a meaningful matter without exceeding the
bounds of the capabilities of the connected terminal, which could
be a 3G phone, a laptop on 802.11 or a desktop on a modem. The
bounds could be described in terms of the size of the display, lim-
iting the size of images, the memory available for storing material
and the CPU power or the connection bandwidth. Coupled with this
is the increasing demand to be able to use multimedia applications
regardless of terminal and network connection.

One solution would be to create a service which is able to respond
to the different client capabilities by reshaping the data being re-
layed back to the terminal. The mobile aware server architecture
(MARCH) is one solution to this problem [1]. MARCH is a dis-
tributed content adaptation architecture which adapts multimedia
content in client-server environments, and the transmission of this
content, to match the network connection and terminal capabilities
of the connected client. This is done by using a client entity which
informs a special server of its capabilities. This mobile aware server
(MAS) will then decide which of the possible proxies to use for this
session.

This paper will discuss the advantages of implementing a distributed
proxy scenario using SelNet as a virtualized link-layer [3], as the
infrastructure for the interaction within the content adaptation ar-
chitecture. SelNet provides a way to build selectors, or function

To appear on Swedish National Computer Networking Workshop (SNCNW)
2004, Nov.23-24, Karlstad University, Sweden

mappings, within the network nodes, which can be used to create
a session specific proxy path through the network. This makes it
possible to create proxy chains which can process and forward con-
tent back to the client independent of further interaction with the
configuring server.

2. RELATED WORK
Multi Protocol Label Switching (MPLS) is an underlay network
which uses label switching into the network for faster and simpler
packet forwarding. When a packet enters an MPLS network a label
is added to it. This label identifies an action for the next hop. When
the packet reaches the boundary of the MPLS enabled network the
label is stripped away and regular routing is performed. SelNet,
like MPLS, also introduces label switching between the network
and link layer. An attempt to internetwork SelNet and MPLS to
study their behavior have been made in [5]. MPLS distributes its
labels among all MPLS routers, whereas in SelNet the labels are
local to each SelNet node. MPLS labels are used to address paths,
whereas SelNet labels address functions. The last property gives
us extended flexibility as to which functionality we can add to the
network.

Plutarch [2] is a network architecture proposal for bridging dis-
junct networking contexts to form a cohesive network. Contexts
are bridged together using interstitial functions (IFs) and provides
indirection by the ability of choosing which context to map a partic-
ular packet flow on to. The approach of making the heterogeneity
in the Internet explicit and controllable is shared by Plutarch and
SelNet. Plutarch does not specify mechanisms to perform this task,
but leaves it to the actual implementation details of each particular
context.

Policy-based content adaptation have been discussed in the mobile
aware server architecture (MARCH) [1]. The idea of a centralized
point, which depending on the operating conditions of the client
terminal device, offer content adaptation in the form of a proxy
path is also the foundation of our proposed framework. But instead
of implementing this negotiation at the application level, we use the
extended functionality of SelNet to implement it at the virtualized
link layer. The problems with source routing and making sure the
reverse path is handled in the right order can be solved with relative
ease thanks to the inherent properties of SelNet.

3. SELNET AND SELECTORS
SelNet uses XRP (eXtensible Resolution Protocol) as a standard
means of signaling and SAPF (Simple Active Packet Format) to
provide basic demultiplexing functionality [3]. This functionality

is provided through the use of selectors, which are function names,
giving the name ”Selector Network” to SelNet.

For signaling to work within SelNet we must know the ethernet
address of the node and the name of a selector to communicate
with. XRP is used for resolution in the following way. An XRP
resolution request (RREQ) is a broadcast of a name to a well-known
selector address on the network. This request specifies the address
we wish to resolve and how the resolution should be done. This
request propagates until it reaches the target, which will reply using
an XRP resolution reply (RREP) with its ethernet address. SAPF
defines the the data packet format for SelNet. XRP and SAPF will
be mentioned within this paper, but are explained in greater detail
in [4].

3.1 Static Forwarding in SelNet
SelNet positions itself as an underlay network, which means that
it sits below the network layer and exports an indirection primitive
to the upper layers of the protocol stack. As a virtual link layer, it
allows us to use any available datagram service as a link layer to
SelNet itself. In the following example we assume that we map the
virtual link layer to a real ethernet thus reconstructing the current
Internet model.

To introduce the concept of how SelNet functions we are going to
describe how forwarding is done in a static environment. Packet
forwarding inside SelNet’s virtual link layer is based on selectors.
Each SelNet packet carries the selector as an address field. This
packet format is defined by SAPF. The selector address, a flat 64-bit
value, identifies the function which is to process an incoming packet
(similar to a flow or path ID). The payload is some form of arbitrary
content which is handled by whatever function is assigned to the
selector in question. Selectors have different values depending on
how they are assigned.

socketsocket

App

Node A Node B Node C

App

FWD (Node B, sel t) [LL(node B),
sel t, payload]

T FWD (Node C, sel u) [LL(node C),
sel u, payload]

U Deliver()
selnet_demux(sel s,payload)

write (payload) read (payload)

S

Figure 1: Forwarding in a static SelNet setup. (FWD= forward-
ing function, LL=link layer)

Figure 1 shows a scenario where selectors are static and preallo-
cated. In this example an application on Node A wishes to com-
municate with an application on Node C. In order to do so, the
application on Node A opens a socket to SelNet and writes to it,
thus invoking the selnet demux operation. When this operation is
called, the forwarding function (FWD) is invoked since the selector
s is used in this example to communicate with the remote applica-
tion. The forwarding function performs two tasks: it rewrites the
selector from s to t since selector s is only valid inside Node A,
and then sends the packet with the rewritten selector to Node B.
Selector t on Node B corresponds to the forwarding function which
will carry the packet over the next hop to Node C. Once again the
selector is rewritten, this time from t to u. When the packet reaches
the destination, i.e. selector u on Node C, it is demultiplexed and
the payload is passed to the function which is associated with se-

lector u. In this case, it is a local delivery function which passes the
payload of the packet through a socket to the application.

Note that it is not necessary to rewrite applications to use selector
sockets instead of IP. Because SelNet positions itself as a (virtual)
link layer, an adaption layer can be inserted between the IP layer
and SelNet which maps IP addresses to selectors in the same way
as IP addresses are mapped to ethernet addresses. Thus, existing
applications can still continue to access networking functionality
via the IP sockets API although the IP traffic will be carried over
SelNet. This functionality was implemented in [4].

3.2 Content Adaptation in SelNet
In the previous example we showed how SelNet works when selec-
tors are statically assigned. Static, global selectors function only
when all nodes independently agree on the assignment. This is be-
cause there is no distribution mechanism, for distributing labels, in
SelNet [3]. However, selectors can also be dynamically assigned
by communicating nodes since selectors only have validity on the
node that assigns them. The selectors at each node are bound to
a unique session and can be used to set up adjustable indirection
through the network. These indirection properties allow scenarios,
such as distributed proxies, to be built relatively easily compared to
implementing similar functionality purely at the application layer.
It also gives us a single point of indirection with no need of overlap-
ping indirection mechanisms. To introduce a framework of content
adaptation in SelNet we will use the following types of selectors:
forward functions, proxy functions, transcode functions and deliver
functions. The forwarding function, as previously explained, will
carry a packet to its destination, the proxy function will help set up
a proxy path from the client to the server. The transcode function
will perform the content adaptation and pass the transcoded data
along the path on the way back to the client. Finally the deliver
function will pass the packet payload through a socket to a waiting
application.

4. FRAMEWORK
Setting up a multi-hop content adaptation path over a chain of dis-
tributed proxy servers at the application layer can be very compli-
cated. If there exists an architecture which can handle the adap-
tation, there are still three questions to be answered: How do we
know if the content provider is using a content adaptation system?
How do we inform the server entity of our capabilities? How should
an adapation path be constructed and imprinted the network? The
first two questions are not discussed in this paper, but some meth-
ods are explored in [1]. Instead this paper focuses on methods to
let the content provider shape the returning traffic with the use of an
intermediary proxy provider. We are going to consider a framework
containing a client entity, a proxy provider controlling a number of
proxies and a server entity, all of which are SelNet nodes.

The task of setting up a session over the adapation network can
be split into the following sequence. First the client entity will in-
tercept an application request for an URL and relay it, combined
with the user preferences and terminal capabilities, to the proxy
provider. The proxy provider will then build a suitable chain of
transcoding proxies and set up a path of selectors on the chosen
proxy nodes between the client and the server entity. The first-hop
proxy node+selector pair is then communicated back to the client
entity which uses it to initiate a session with the server through the
preconfigured chain.

socket

Proxy A

s FWD (Proxy A, sel t)
sel t, payload]

t
selnet_demux(sel s,payload)

write (payload)

Server app

socket

d DELIVER()

read (payload)

Client app

Proxy B Client Entity

[LL(Client Entity),[LL(Proxy B),[LL(Proxy A),
sel d, payload]u FWD (Proxy B, sel v) sel v, payload]

v
w FWD (Client Entity, sel d)

TRANSCODE() TRANSCODE()

Server Entity

Figure 2: Content Adaptation in SelNet. (FWD=forwarding function, TRANSCODE=transcoding function, LL=link layer)

4.1 The Client Entity
The client entity is a configurable SelNet node which resides at or
close1 to the client terminal. It will sit and listen to the network
traffic requested by applications on the terminal. The client entity
has been configured with information about the capabilities of the
terminal and a ruleset which will decide whether or not it should in-
tercept outgoing traffic. This ruleset can be bound to activate when
certain protocols, ports or hosts are accessed.

When the ruleset specifies that the client entity should intercept the
traffic, it will try to set up a content adapation path through the
network. This is achieved by contacting a proxy provider within
the content adapation network with information about its own ca-
pabilities and which target is requested. The client entity will then
proceed to wait for a reply. The reply will contain the first-hop
proxy and a unique selector to be used to initiate a session with the
server entity over the specially designed adaptation path. When the
session has been initiated and transcoded data begins to arrive, the
client entity will use its deliver function to pass the payload of the
packets through a socket to the application.

4.2 The Proxy Provider
The main task for the proxy provider is to set up an adaptation
path from the client entity, through various proxy servers, to the
server entity. This path should be dynamically built to suit the dif-
ferent needs of the many different terminals trying to connect to the
server entity. The proxy provider makes a decision based on the
information provided by the client and the knowledge of the prox-
ies in its control to create an ordered sequence of the proxies to be
used for this specific session. This ordered sequence is then to be
imprinted on the chosen proxy nodes. This is where the features
of SelNet become very useful. By using SelNet selectors to set up
the path through the network we will not only be able to define a
sequence containing which proxies to invoke, in which order they
should be invoked and how to invoke them on a global level. We
can at the same time set up a network proxy path from the client
to the server, which the client can access simply by activating the
first-hop node+selector pair.

The proxy provider creates two types of selectors on each node in
the proxy chain: a proxy selector which will be used by the client to
set up the control path from the client to the server and a transcode
selector which will be used on the return path to transcode the data
on the way back to the client. When the adapation chain is initi-
ated the proxy function describes which node+selector is next in
1For example a 3G phone which does not run a client entity, could
have a client entity located in the 3G gateway as suggested in [1].

the control path to the server and the transcode function describes
which transcoding to perform and which proxy selector it is bound
to. As the control path is resolved through an XRP RREQ coming
from the client to the first-hop proxy, the node will respond using
an XRP RREP, configure its transcoding selector to point back to
the client and issue its own RREQ for the next proxy in the chain.
Similarly the next proxy will point back to the previous proxy in the
chain until finally the server entity is reached by an RREQ from the
end proxy. On the way back the server entity will use a forwarding
function to reach the transcoding selector on the end proxy, which
in turn will forward the transcoded data to the next transcoding se-
lector until the data reaches the client entity delivery selector.

By using its knowledge of the client terminal and its control of the
different proxies in the network, the proxy provider is able to set
up an optimal way through the network. It is in total control of
the adaptation process in the sense that only the proxy provider has
knowledge of the entire sequence of transformations taking place.
Each invoked proxy will only have local information about what
itself is supposed to do and its immediate neighbors.

4.3 The Server Entity
The server entity is the node on which the content server runs.
When the chain has been created by the proxy provider and the
client has resolved a control path traversing the proxies through the
network, as discussed above, there is no need for any additional
functionality other than being able to receive requests and forward
data to the nodes in the network. Figure 2 shows how this forward-
ing and transcoding takes place on the way back to the client. This
process will be explained in detail the next section.

Within the discussed framework it is quite possible to have the
server entity and the proxy provider residing on the same physi-
cal location within the network. However, we feel that it would be
more suitable to let the content provider run a single server entity
node to respond to direct requests. The proxy provider, and the
proxies under its control, would be more suited to be run by a third
party with which the content provider has a service level agree-
ment. This way the proxy provider can cater its functionality to a
number of different content providers and still ensure the integrity
and copyright issues important to the content provider.

5. SCENARIOS
The proxy and adaptation path through the network is initiated when
the proxy provider configures the path by creating the proxy and
transcoding selectors on the chosen two proxy nodes. However, the
path is not activated until the client entity has resolved a control path

through the entire network to the server entity. The control path is
established using XRP resolution requests (RREQ) specifically tai-
lored to trigger the proxy selector on the nodes. Once the proxy
selector is activated it will not only send the standard resolution re-
ply, as in the example of static forwarding above, but configure its
own transcoding function to point back to the client. More specifi-
cally, if a node X wants to communicate through a proxy on node
Y , node X broadcasts an RREQ to the advertised XRP selector on
node Y . This request specifies the address that node X wants to set
up a proxy on and which selector it is set to trigger.

There could be any number of nodes in between the client and the
various proxies. The SelNet network could also be partially de-
ployed, co-existing with other network infrastructure as discussed
in [3]. We are going to simplify the model scenario by ignoring the
actual routing taking place between the nodes.

5.1 One Chain of Two Proxies
The first steps of the process of setting up a proxy and adaptation
path through the network is shown in more detail in Figure 3. Be-
fore sending out a RREQ, the client node C installs a function at a
new selector r to handle any resolution reply (RREP) and a function
d to handle any incoming transcoded data for delivery of packets to
its IP stack. Let us assume that proxyA is the first-hop node, which
the client wants to use to set up a proxy and adaptation path through
the network.

The client C will begin by sending out an XRP RREQ, carrying the
target label A and the target proxy selector u (1). Proxy A decides
it is the target of the RREQ and that it should send back a reply
and at the same time configures its transcoding function to point
back to C and sends out a similar RREQ to the next proxy in the
chain, proxy B with selector v as the target. The RREP sent back
to client C simply confirms that the proxy control path has been
set up in front of C and that it is okay to begin transmitting data
to the specified node+selector pair (2). Based on the RREP, client
C will install a forwarding entry with selector f pointing to the
pair A+u (3. Similarly proxy B will set up communication with
the content entity. The first control data sent from client C through
proxies A and B might be a standard HTTP GET. This is going to
cause the content entity to begin forwarding data along the reverse
transcoding path which was set up behind the control path as seen
in Figure 2.

6. OUTLOOK
The contribution of the SelNet architecture is twofold. The archi-
tectural approach of placing indirection at the bottom of the pro-
tocol stack and the way we can maintain flexibility in the face of
changing requirements by the usage of addressing packet process-
ing functions rather than only nodes. The label switching will also
make packet forwarding faster than with IP [6]. The main advan-
tage of using SelNet as a content adaptation network is that we have
an easy and flexible way of creating indirection through the network
to set up an adaptation path leading from the server, through sev-
eral separated proxy nodes and back to the client. And this without
having to build in complicated solutions at the application layer.

We already have the core infrastructure of SelNet implemented and
we have implemented an ad-hoc routing protocol called LUNAR us-
ing SelNet for forwarding and demultiplexing [4]. We also have a
real-world implementation of a simple distributed proxy scenario,

Proxy A

r rrep()

Client C

resolution style: proxy path
resolution target: <A, u>

RREQ (broadcasted)

t transcode()

x XRP()

Proxy A

payload: packet to Content Entity
t transcode(C, d)

x

r rrep()

Proxy A

t

x XRP()

XRP()

deliver()

f
d deliver()

d

deliver()d

reply to: <C, r >
transcode for: <C, d >

RREP (to <C, r >)

proxy(B, v)

proxy(B, v)

proxy(B, v)

u

u

u
fwd(A, p)

Client C

Client C

transcode(C, d)
result: <A, u >

DATA (to <A, u >)

(1)

(3)

(2)

Figure 3: SelNet performing a Proxy resolution.
which we will continue to develop. There are a number of in-
teresting proxy services which can be used in this context. We
have considered the following: VJ TCP header compression, Gzip
compression, RabbIT web proxy, Squid web proxy cache and Glo-
mop/Transend image transcoding proxy. The next step will be to
create a single protocol implementation of dynamic distributed con-
tent adaptation, using the framework presented in this paper.

7. REFERENCES
[1] ARDON, S., GUNNINGBERG, P., LANDFELDT, B.,

ISMAILOV, Y., PORTMANN, M., AND SENEVIRATNE, A.
MARCH: a distributed content adaptation architecture.
International Journal of Communication Systems, Special
Issue: Wireless Access to the Global Internet: Mobile Radio
Networks and Satellite Systems (2003).

[2] CROWCROFT, J., HAND, S., MORTIER, R., ROSCOE, T.,
AND WARFIELD, A. Plutarch: An Argument for Network
Pluralism. In ACM SIGCOMM Workshop on Future
Directions in Network Architecture (FDNA) (2003).

[3] GOLD, R., GUNNINGBERG, P., AND TSCHUDIN, C. A
virtualized link layer with support for indirection.
http://user.it.uu.se/ rmg/pub/fdna05-gold.pdf.

[4] TSCHUDIN, C., GOLD, R., RENSFELT, O., AND WIBLING,
O. LUNAR: a Lightweight Underlay Network Ad-hoc
Routing Protocol and Implementation. In Next Generation
Teletraffic and Wired/Wireless Advanced Networking
(NEW2AN’04) (2004).

[5] WESTLING, A. Internetworking MPLS and SelNet. Tech.
Rep. 2004-013, Uppsala University, 2004.
http://www.it.uu.se/research/reports/2004-013/2004-013-
nc.pdf.

[6] WOLF, T., DECASPER, D., AND TSCHUDIN, C. Tags for high
performance active networks. In The Third IEEE Conference
on Open Architectures and Network Programming (OpenArch)
(2000).

