Blind Source Separation

Robert Gavelin
robert.gavelin.0531@student.uu.se

Harald Klomp
harald.klomp.3675@student.uu.se

Clinton Priddle
clinton.priddle.7851@student.uu.se

Mats Uddenfeldt
mats.uddenfeldt.9771@student.uu.se

June 11, 2004

Report for Adaptive Signal Processing Project
Signals and Systems group

Department of Engineering Sciences

Uppsala University

Sweden

Head of course: Mikael Sternad
Supervisor: Mathias Johansson

Abstract

Blind source separation (BSS) refers to the problem of recovering two or
more sources from a number of unknown mixtures. This report presents
a real-time implementation of blind source separation of two sources from
two unknown mixtures. The algorithm used is a version of the degenerate
unmixing estimations technique (DUET) algorithm and has been imple-
mented in Matlab. We have tested the implementation on both artificial
and real mixtures. The artificial mixtures could be separated almost per-
fectly, whereas only some of the "real recordings” produced a noticeable
separation, others did not separate at all. We separated voice mixtures,
but this algorithm works with any near W-disjoint orthogonal signals.

This report also contains a brief theoretical description of Bayesian
ICA for static linear mixtures and the use of a feedback Infomax separa-
tion network for convolved mixtures.

All of the resources used in this project including Matlab code, wav-
files, this report and more can be found on the project webpage at
https://student.signal.uu.se/ adapt0405/.

Contents

1 Introduction 4
2 Methods 4
2.1 Bayesian Independent Component Analysis 4
2.1.1 Bayesian source separation 4

2.1.2 Pre-processing o 6

2.2 Separation network for convolved mixtures. 6
2.2.1 Entropy Maximization 6

2.2.2 Infomax separation network 7

2.3 Degenerate Unmixing Estimation Techinque 8
2.3.1 Algorithm oo 8

2.3.2 Parameters o 10

2.3.3 Demixing 11

3 Experiments 12
3.1 Equipment 12
3.2 Matlab. 12
3.2.1 Implementation of modified DUET algorithm 12

3.2.2 Data acquisition and playback 13

3.2.3 Graphical Interface oo 13

3.3 Parameters 14
3.4 Demixing of Artificial Mixtures 15
3.5 Demixing of Real Mixtures 15

4 Results 15
4.1 Demixing of Artificial Mixtures 15
4.2 Demixing of Real Mixtures 16

5 Conclusions 17
6 Further Studies 17

7 Resources 18

1 INTRODUCTION 4

1 Introduction

This report is written as part of the Adaptive Signal Processing Project given
by the Signals and Systems group of the Department of Engineering Sciences
at Uppsala University. Blind Source Separation (BSS) deals with the problem
of separating unknown mixed signals without prior knowledge of the signals.
There are many fields where Blind Source Separation could be useful, e.g. sep-
aration of radio signals in telecommunication, separation of brain waves from
medical sensors or in audio applications as in hearing aids or for demixing stereo
recordings. The methods for achieving BSS are not tied to any specific type of
signals, but in this project mixed audio speech signals are used in the derivation
and experiments.

The goal was to let two people talk simultaneously in two microphones placed
some distance apart from each other. An adaptive algorithm would then sepa-
rate the speakers, despite the fact that their speech is within the same frequency
range and that no explicit desired signal is available to control the adaption.
This problem is sometimes referred to as the ”cocktail party”-problem. The
work was originally intended to be a direct continuation of the corresponding
project of 2003, which had investigated two signal separation problems: static
linear mixing and convolved mixtures. A Bayesian approach to Independent
Component Analysis (ICA) had been used to separate the static linear mix-
tures and a feedback Infomax separation network to separate convolved signals.

This year the goal was to find an algorithm that would perform the signal
separation in real-time and implement it in Matlab. Early on in the project
the Degenerate Unmixing Estimation Technique (DUET) was found while in-
vestigating new approaches to the problem. DUET was decided to be more
interesting because it performs source separation by frequency domain process-
ing and is independent of the number of mixed sources. We decided to put
all our efforts into implementing DUET in Matlab and turn to the previously
investigated methods only if we failed.

This report will begin with a brief theoretical introduction of the Bayesian
ICA algorithm and the feedback Infomax separation network, but focus will lie
on the DUET algorithm. The DUET algorithm was also successfully imple-
mented and tested in Matlab.

2 Methods

2.1 Bayesian Independent Component Analysis
2.1.1 Bayesian source separation

Consider a number of sources s;(t), which are linearly mixed using a mixing
matrix A with coefficients a,; producing mixtures x;(t). The mixing equation
can be written as

x=As (1)

The aim of ICA is to find a separation matrix W that is the inverse of the mixing
matrix A. The obvious limitation is that the number of sources must equal the
number of mixtures to be able to calculate A~1. The separated signals wu;(t),
are calculated as

u=Wr=WAs=A"'As=s (2)

2 METHODS 5

81 a O— x W D—>

dag Wai

source signals mixed signals

dain Wiz

52

Figure 1: Mixing and separation network for two signals

The source separation function is derived using Bayesian probability theory.
The probability of the model is described in terms of the likelihood of the data
and the prior probabilities of the model and the data.

P(z|A, s, 1)

P(A,s|z,I) = P(Als, I) PG (3)

where I represents any prior information and the probability of the mixing
matrix is described in terms of the likelihood of the mixed signals. The full
derivation of this algorithm can be studied in detail in [Knu99] and [ORS03].
Here follows a brief summary. By using the fact that the prior for z is a constant
and the logical assumption that the sources are independent from the mixing
matrix, (3) can be rewritten as

P(A,s|z,I) x P(A,s|I)P(x|A,s,I)= P(A|I)P(s|I)P(x|A,s,I) (4)

The mixing matrix can be found by integrating over all possible values of the
source signals and further simplified by taking the logarithm of the result

logP(Alz,I) < logP(A|I) + 10g/P(S\I)P(m|A,s,I)ds (5)

A stochastic gradient method is used for finding the maximum of (5) with respect
to the mixing matrix W

If A is orthogonal AW is found through

9 Pi(ui) Pi(us)
AW = ——1gP(Alz,I) = AT + =257 —w + 2225w 7
ow (Al 1) pi(u;) pilu;) @)
To separate speech signals one need to find a suitable prior for the cumulative
probability density functions. The hyperbolic tangent is generally considered
suitable as prior for the amplitude distribution of speech. The hyperbolic tan-
gent

9(ui) = tanh(u;) (®)
gives o
P () o)

2 METHODS 6

which fits equation (7). Using the probability density function of the hyperbolic
tangent together with the separation yields the following update algorithm for
finding the separation matrix W:

AW =W + (= g(u;))u" W (10)

Wi = Wi + AW (11)

2.1.2 Pre-processing

Pre-processing of the mixed signals can be used to enhance the performance of
the Bayesian ICA algorithm as explained in [ORS03].

Centering a signal z; is done by subtracting its mean vector m = E{z;} from
the signal to make it a zero-mean variable. By centering the mixed signals z;
the algorithm is simplified, since it implies that wu; is calculated as a zero-mean
estimate of the source signals. An estimate of the mean vector of the source
signals can be added to u;. The product of the separation matrix and the mean
vector Wm gives this estimate.

Whitening is a way of decorrelating the source signals to create an orthogonal
mixing matrix A. Instead of having to estimate an arbitrary n-by-n matrix,
which would require estimating n? coefficients, an orthogonal matrix only has
n(n—1)/2 degrees of freedom. By whitening A before the application of the ICA
algorithm, but after centering, the observed vector x is transformed linearly to
a whitened vector Z. This whitened vector has uncorrelated elements and its
covariance matrix equals the identity matrix

2.2 Separation network for convolved mixtures
2.2.1 Entropy Maximization

In a real case scenario it is highly unlikely to have a static linear mixture. Con-
sider the case of a room with two people who are talking into two microphones.
The mixing will not be static, since each voice will have a different delay to
reach the microphones. In this case the mixing of two sources can be described
as

xl(n) = 0,1181(71) + CL1282(TL — Dlg) (12)
.Tg(n) = a2232(n) + a2181(’n — D21) (13)

Since the mixtures are convolved with each other and the delays are not known
it is not as easy as in the static linear case to find a separation network. One
approach that is effective is to minimize the mutual information between the
components f = g(ui), where g is a function that approximates the cumulative
density function of u;. This is the equivalence of maximizing the entropy of f. In
the case of speech the hyperbolic tangent can be used as a good approximation
of the CDF, which, as shown in [ORS03], leads to the following update algorithm

W =W + p[— 2tanh(u)]z” (14)

It is interesting to note that no deconvolution is performed to separate the
convolved sources.

2 METHODS 7

2.2.2 Infomax separation network

After finding an update algorithm which uses entropy maximization, we need to
build a separation network to be able to implement the algorithm. Experiments
have shown that the feedback network architecture shown in Fig. 2 has given
the best results according to [Tor00]. The network has two FIR-filters, which
are the cross-filters Wio and Ws,. These filters add the convolution sums to the
opposite branch in the network. This is done to avoid the whitening effects of
entropy maximization, since the filters cannot remove time redundancies from
their input signals. This way the redundancies between the signals are removed.

Adjust Maximize
-
Weights | Entropy
£ £,

A 4

Figure 2: Infomax separation network

The mixtures are z-transformed to
X1(2> = A1151(Z> + Algsg(z) (15)

XQ(Z) = AQQSQ(Z) + Angl(z) (16)

which produces the following outputs from the separation network

Ul(Z) = W11X1(Z) + ngUQ(Z) (17)
UQ(Z) = WQQXQ(Z) + W21U1(Z) (18)

By using 15 and 16 it is possible to derive the solution matrix W for perfect
separation and deconvolution as

— An(2)™1 —Ana(2) A5y

= . . (19)

Axn(2)7" —Ax(2)A
Let us now return to the update algorithm 14 and adapt it to the separation
network

Wij = Wij + ‘LL[- Qtanh(ui)]uj (20)

Wi = Wi + ,u[— 2tanh(ul)]xl + (21)

2 METHODS 8

where 7j denotes the cross-filter weights and 47 the scaling factors. The learning
algorithm have been split into the decorrelation rule of (20), which removes
redundancies between the signals, and the mazimum entropy distribution rule of
(21), which tries to produce an output PDF as close to the flat unit distribution
as possible. The extra term in (21) 1/W;; is there to keep the algorithm from
the situation where W;; is so small that —2tanh(U;)z; stays around the same
value. The learning rules for the Infomax separation network are derived and
further explained in [RJW02].

2.3 Degenerate Unmixing Estimation Techinque
2.3.1 Algorithm

To introduce the DUET algorithm we need to establish a new model for de-
scribing the mixing of sources. As before we will discuss the theory in regards
to the specific example of two microphone channels. The sources, which in our
case is represented by a number of persons talking in the room, are assumed to
be standing on different locations, as shown in Fig. 3.

so(n) s4(n)
54(m)

S4(n)

¥

x4(n) Xo(n)

Figure 3: Two-channel microphone arrangement with multiple sources

The DUET algorithm operates in the frequency domain. No inverse matrix is
calculated and it is one of the reasons it shows very good performance. Another
bonus compared to Bayesian ICA is that the number of sources can be greater
than the number of mixtures, in fact it can be used for an arbitrary number of
sources. We worked with and modified the online DUET algorithm [RBRO1],
which has been developed especially with a real-time implementation in mind.

We chose to implement our own version of the online DUET algorithm because
of the good results presented in [RBRO1].

e It is fast. Their implementation is about 5 times faster than real time.

e It is effective. They achieved 15 dB average separation for anechoic mix-
tures and 5dB average separation for echoic mixtures.

e [t separates an arbitrary number of sources from a set number of mixtures.

2 METHODS 9

For a two-channel microphone arrangement with K sources, the incoming mixed
signals x1 and x5 can be described as

w1(n) = s;(n) (22)

=1

K
ra(n) = a8~ 4)) (23)

The mixtures z; and zo are sampled and split into blocks of length N with
overlap. These sample blocks are multiplied with a windowing function W and
then discrete time fourier transformed to

21 2(n) = W(n)a12(n) (24)
N—-1

XLQ(UJ) = Z x?ﬂ(n)e*Qﬂ'inw/N (25)
n=0

Transforming the mixtures gives us a spectrogram with a two-dimensional time-
frequency grid shown in Fig. 4. Since 1 2(n) consists of a mixture of the original
sources s;(n), transforming the mixtures means that the sources now also have
undergone a Short-Time Fast Fourier Transform (ST-FFT). We will refer to the
fourier transform of the sources as S;(w). For a given source j we can describe
the ST-FFT of (22) and (23) as

[§ & } - [aje*liwaj]Sj(W) (26)

A Xqtkt) A Xolk.l)
@ & C @ @ @ © 0 @ @
O @& ® 0 & C e @ C 0
o @ © O €] e @ 0 e)
@ O @ @ L] @ O @0 @ @
e 0@ @ ¢ ® 000
© e @ 0O © ¢ e ® 0 ©
o e@ecQ0 o O @ O o
O e @O0 o C e ® 0 0
e © O ® @ ¢ © 0@ o

| [

Figure 4: Time-frequency representations of the microphone signals

The DUET algorithm is based on the basic assumption that all of the sources
have a sparse frequency spectrum for any given time. This implies that each
time-frequency point in the spectrogram shown in Fig. 4 is associated with only
one source. This property, which is essential for the DUET algorithm, is called
the W-disjoint orthogonality property and can be described as

2 METHODS 10

2.3.2 Parameters

To find the parameters in the online DUET algorithm, we will use an Maximum
Likelihood (ML) gradient search. We begin by defining

1 1w
pi(w) = T K1 W)ae® — Xo(w)? (28)
J

We can see that for any given source j there is a function p;, which is 0 for all
frequencies that belongs to j. That is

pilw) =0 Vwe Sj(w) (29)

As shown in [RBRO1], the smooth ML objective function is

J= min Y “Lin (721 47 2 e K (30)

a1,01,..,aK,0K A
where A is the amplification factor.

The partial derivative of J with respect to d; is

oJ e~ 2
—_— . . wa Y
85j zw: 27{(:1 e—2or 14 a? J

(m{ X160} Re{Xa} — Re{X,¢™¥7} - Im{X}) (31)

and the partial derivative of J with respect to a; is

&] o Z €_Apj 2
daj ZK “2or 14 a?

w r=1 e

. (aj|X1\2 — a;jpj — Re{X €% }Re{Xo} — Im{ X, e }Im{XQ}) (32)

These partials were recalculated by us, since we failed to get the algorithm to
function with the ones given in [RBRO1].

We assume we know the number of sources in the mixtures and initialize an
amplitude a; and a delay d; estimate for each source. The parameters a; and
0, are updated based on the previous estimate and the current gradient as

a;{k] = a;lk — 1] — By [k](% (33)
;1] = ;[— 1] — Bo K] 37" (34)

where (3 is the learning factor and «;[k] is a time and mixing parameter de-
pendent learning rate for time index k£ and estimate j. It is practical to adjust
the learning rate depending on the amount of mixture energy in the current
estimate. The mixing energy can be described as

Gkl = K o | X1 - | X (35)

e~ APi

2 METHODS 11

and we define
gslk] = yqs[k — 1] + q[k] (36)

where 7 is the forgetting factor. This allows us to write the parameter dependent
update rate «j[k] as

ajlk] = (37)

2.3.3 Demixing

According to (29), we know that p; is minimum for any given time-frequency
point that belongs to s;. If this is not the case, the time-frequency point belongs
to another source. We can therefore construct a time frequency mask based on
the ML parameter estimator.

w-{ g GRS o

Now we can extract the discrete time fourier transform estimate of the jth
source from mixture X;(w)

Sj(w) = Q;(w) X1 (w) (39)

This is represented by the Demizing block in Fig. 5.

s]

x,(n X, (k.0 B afk,l) i " Sy k.l 5 v (1)
5 2 IFET
ST-FFT ER® K= +
w & OLA
.- & o
A, (1) X, (k1) (k. 1) S, (kD syin)

Figure 5: Block diagram of DUET source separation

At this point we have performed the signal separation and all that is left to do
is to compute our windowed source estimate §? using the inverse discrete time
fourier transform

1 N-1 . /_
A= 3 8w (10)
n=0

3 EXPERIMENTS 12

3 Experiments

3.1 Equipment

Since the algorithm required input from two microphones simultaneously, these
were connected to the line-in input of the soundcard via a microphone amplifier,
so that one microphone connected to the left channel and the other one to the
right channel. Matlab was used to capture the audio signals from the line-in
input, separate the sources and output the separated data to the soundcard,
according to the block diagram in Fig. 6.

Source 1

@ Mic L
@7 Microphone | Source 1+2 PC
N X amplifier

Source 2 Mic R Line-in

" |Soundcard 1 MATLAB
Source 1 <(([;'7 Output
Source 2 <(([>|7

Figure 6: Block diagram of the equipment set-up

3.2 Matlab
3.2.1 Implementation of modified DUET algorithm

The algorithm is written in Matlab 6.5 and was run on a PC. See Fig. 7 for
a program flow diagram. It works by taking a two-channel wav-file, with one
mixture per channel, and reading it, or part of it, into an array. The program
could easily be modified to take samples directly from the soundcard. It then
takes 1024 samples at a time from this array and the fast fourier transform
(FFT) for this set of samples is calculated. Once this is done we can estimate
the parameter changes and update the parameters using equations (33) and (34).
After updating the parameters, we can separate the signals from this block using
a binomial mask as in equation (39). The separated two-channel array is then
either saved to a wav-file or played by the soundcard. We then wait, if needed,
until the buffer has enough elements, and start over with the next 1024 samples.
This process is repeated until the whole file has been demixed.

Soundcard
Update » ndcar
—]
Mixed 2 channel Temporary ammay Demixed 2-
(1024 elements) [| FEE ¥ e [l chanpel anay
Separate
— siiin — Wav file

Figure 7: Program flow diagram

3 EXPERIMENTS 13

3.2.2 Data acquisition and playback

One big issue was how to acquire and play sound in real-time. The basic func-
tions wavrecord and wavplay included in Matlab are good when dealing with
large chunks of audio data. But since the BSS algorithm works continuously
with small data blocks, there were many problems arising. It was for example
impossible to perform other calculations while recording, since it is not possible
to run wavrecord in a non-blocking mode. Our solution to this was to record
everything in advance, save the data in a matrix using wavread and thereafter
separate the matrix data in real-time. Fortunately, wavplay could be used to
play the data in a non-blocking asynchronous mode, by using the flag asynch.
Another problem was that the soundcard got overloaded, because the program
tried to write to the soundcard too often. To solve this, we established a buffer
for temporary storage of the output data, thus write longer data sequences to
the soundcard less frequently. This made our code work on most computers,
but it is still not an ideal solution, since soundcards with poor efficiency would
still crash.

We also did a lot of research in the Data Acquisition Toolbox, which contains
many functions to manage real-time acquisition and playback of audio data.
Here the idea is to create one object for analog input and one for analog output.
After setting the correct parameters, the objects can be started. The analog
input object acquires data asynchronously (in contrast to wavrecord) and can
be set to trigger a function after a certain number of samples. Our idea was
to trigger a function every 1024 samples, perform the separation and write
the result to the analog output object, which has an automatic buffer to solve
the soundcard overload problem. Unfortunately we found out that the Data
Acquisition Toolbox worked differently with different soundcards. Each and
every soundcard has its own set of valid sample frequencies and a certain driver.
For most Windows-based soundcard drivers, the adaptor winsound is associated
with the soundcard. But the soundcard on the experiment audio workstation
at the university did not support this, so we decided to drop this and just use
wavrecord and wavplay instead.

Future development of this project requires a more stable solution to this
problem, either by creating a better buffering solution for wavplay or finding
a way to run Data Acquisition Toolbox in a general environment. Another
method we discussed was to let some external program take care of the data
acquisition and playback. There is for example Java support in Matlab, so
that Matlab programs can collaborate with Java applications. Maybe a Java
application would be able to handle the sound streams better. But we will leave
this for following groups in this project course.

3.2.3 Graphical Interface

To facilitate sound recording, analysis of results and saving of separated data,
we decided to develop a Graphical User Interface (GUI) for the Blind Source
Separation application. This was done by using the user interface editor guide
in Matlab. A screenshot of the GUI is shown in Fig. 8.

In the Input source box, the user can choose whether to use audio data
from a sound file or to perform a live recording from the soundcard. It is
possible to adjust the beta, gamma and lambda parameters to optimise the

3 EXPERIMENTS 14

File Contral Help

BLIND 50URCE SEPARATION

Input source Parameters Settings
" Live recording Betx [poz Sample rate:m Hz
o WFile Gamma: | gg Recardinglength: |10 seconds
File name: Lambda:["1p ¥ Play while separating

| spa_ena_count.way Flay | Buffer size; IT blocks

Ampliude difference.

118

Results

Mumber of zources: 2

1.1

0 20 40 &0 80 100 120

Time delay
L e o :
} : : Separated files
| e e e G S spa_eng.count srcdawat v | Play |

0 20 40 B 80 100 120

Figure 8: Screenshot of the user interface

performance of the algorithm. The user can also change other settings concerned
with recording and playback of audio data. After pressing the Start separation
button, the input data is acquired either from a file or the soundcard. Thereafter
the algorithm separated the sources in real-time. After the separation is done,
the amplitude difference and time delay between the sources are plotted in the

window. One file for each source is also created and displayed in the Separated
files box.

3.3 Parameters

We used the following parameters during our experiments; A = 10, v = 0.9
and 8 = 0.02 where X is the amplification factor, v is the forgetting factor
and (is the learning factor. These parameters are similar to the ones used
by [RBRO1] in both an anechoic room and in an echoic office environment. As
a windowing function we used a rectangular window. We found that different
window-functions did not produce noticeably different results, but that the FF'T
size was important. The parameters are fairly stable if you choose a good step
length. We used one step length for the artificial mixtures produced in Matlab
and one for the real recorded mixtures.

4 RESULTS 15

3.4 Demixing of Artificial Mixtures

To get a source mixtures of audio files we used the Matlab function wavread
to read the contents of a file into an array. By mixing two arrays we were able
to get a mixture, which we could try to separate block-wise in real-time. The
resulting demixed signals were saved into new arrays which could be stored to
file using wavwrite.

3.5 Demixing of Real Mixtures

We had access to real speech mixtures used in various international BSS projects
and also created a few of our own in the echo-free laboratory. Since the algorithm
we implemented was supposed to run in real-time we read from the soundcard
using the Matlab wavrecord function. We attempted to separate the resulting
mixture block-wise in real-time. As with the mixed audio files the results were
then stored to file.

4 Results

4.1 Demixing of Artificial Mixtures

The algorithm was able to demix all mixed audio files. Separation is very good
and the algorithm converges within only a few iterations. Since we managed
to demix all of the mixed audio files we will only present one case. The file
mymiz.wav consists of one person talking in Swedish and one person talk-
ing in Norweigian. The files were read separately and mixed within Matlab.
The amplitude difference and time delay plots for mymixz.wav are shown in
Fig. 9. The resulting separated files can be found on the project webpage as
mymix_srcl.wav and mymix_src2.wav. As you can see we use a delay starting
estimate of +1 and —1 which is the case of one source located to the right and
one source located to the left. The algorithm converges very fast and the best
separation contains almost no trace of the other source.

Amplitude difference

Time delay
1 T T T T T

Figure 9: Amplitude difference and time delay plots for mymiz.wav

4 RESULTS 16

4.2 Demixing of Real Mixtures

The real speech mixtures present a more difficult problem. Two speakers are
recorded speaking simultaneously using a two-microphone setup. Since the al-
gorithm was supposed to run in real-time, reading from the soundcard was done
using the Matlab function wavrecord. We had some problems when writing to
the soundcard in real-time because different soundcards only allowed a certain
number of writes per second. For future implementations a better method must
be found. An idea would be to use Java within Matlab or an external program
for this.

In the first case of demixing real speech mixtures we used the file spa_eng_count.wav,
which we found on [SR03]. The first speaker says the digits from one to ten

in English (one, two, ...) and the second speaker counts at the same time

in Spanish (uno, dos, ...). The recording was done in a normal office room
and the distance between the speakers and the microphones is about 60cm in a
square ordering. The resulting plots can be seen in Fig. 10. The time delay plot
shows that the algorithm estimates the sources as further and further apart. At
the same time the amplitude plot shows a strengthening curve for both signals.
This file was separated successfully and the resulting files are available on the
webpage as spa_eng_count_srcl.wav and spa_eng_count_src2.wav.

Amplitude diference

Figure 10: Amplitude difference and time delay plots for spa_eng_count.wav

Because of limited time we only made a few real recordings of our own. We had
access to an echo-free environment at the university where we made a number
of recordings of live speech using two speakers and a two-microphone setup.
These recordings were much harder to separate. We chose to publish one of
our recordings under the name liverec.wav. Even though we tried experiment-
ing with different parameters and window-functions and sizes, we failed to get
better results. The original and separated files are available on the webpage as
liverec_srcl.wav and liverec_src2.wav. As you can see in the plot in Fig. 11
the § parameter never converges to something reasonable and stays around the
starting value. Some more work needs to be done here to get better separation.

5 CONCLUSIONS 17

Amplitude difference

TR SRS, P NS WEVEE. SETE NS e T
o z0 40 1] &l1] 100 1z0 140 160

Figure 11: Amplitude difference and time delay plots for liverec.wav

5 Conclusions

We succeeded in implementing a version of the degenerate unmixing estima-
tions technique (DUET) algorithm in Matlab. The implementation was tested
real-time on both artificial and real mixtures. The artificial mixtures could be
separated almost perfectly, whereas only some of the recordings of live speech
produced a noticeable separation, others did not separate at all. As sources
we used voice mixtures, but the DUET algorithm will work with any near W-
disjoint orthogonal signals.

We spent a lot of time trying to get Matlab to handle the audio streams
properly and did not have the time to come up with a solution. This is something
that will need to be addressed in the future.

6 Further Studies

The work on implementing the DUET algorithm for Blind Source Separation
should definitely continue considering the good results we managed to achieve.
Here is a short list of items that we think could be subjected to further studies:

e Solving the audio stream problem by finding a way to run Data Acquisition
Toolbox in a general environment or by using Java to handle the streams.

e Finding more stable parameters. They tend to jump around quite a lot if
you use the wrong step length.

e Using some source location estimation technique to be able to find out
why the algorithm fails to separate some mixtures. This could be done by
calculating the angle and distance to the sources or by plotting histograms.

7 RESOURCES 18

e Combining a frequency domain BSS algorithm, like DUET, with an algo-
rithm operating in the time domain to see if the results can be improved.

e Experimenting with moving sources. One should not have to require the
people talking to remain still.

e Experimenting with moving microphones. Someone requiring hearing aid
equipped with BSS technology should be able to move around.

7 Resources

All of the resources used in this project including Matlab code, wav-files, this
report and more can be found on the project webpage at
https://student.signal.uu.se/ adapt0405/.

References

[Knu99] Kevin H. Knuth ” A Bayesian Approach to Source Separation” in Pro-
ceedings of the First International Workshop on Independent Component
Analysis and Signal Separation: ICA’99 pp. 283-288

[Tor00] Kari Torkkola Unsupervised Adaptive Filtering, Volume 1: Chapter 8,
Blind separation of delayed and convolved sources 2000: John Wiley & Sons
Inc.

[RBRO1] S. Rickard, R. Balan, J. Rosca Real-Time Time-Frequency Based Blind
Source Separation December 2001: ICA2001 Conference, San Diego, CA.

[RJWO02] R. Risberg, M. Janney, B. Warnquist Adaptive Blind Source Separa-
tion June 2002: Signals and Systems group, Uppsala University

[YRO2] O. Yilmaz, S. Rickard Blind Separation of Speech Miztures via Time-
Frequency Masking November 2002: IEEE Transactions on Signal Process-
ing

[ORS03] P. Ojutkangas, A. Runqvist, M. Sérnell Blind Source Separation June
2003: Signals and Systems group, Uppsala University

[BZ03] M. Baeck, U. Zolzer ” Real-Time Implementation of a Source Separation
Algorithm” from Proc. of the 6™ Int. Conference on Digital Audio Effects
(DAFx-03), London, UK, September 8-11, 2003

[SRO3] S. Rickard http://princeton.edu/ srickard/bss.html Blind Source Sepa-
ration

